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A B S T R A C T

Privacy-preserving Content-Based Image Retrieval (CBIR) method is a promising technology to achieve
data confidentiality and searchability in cloud-assisted multimedia (i.e., image or video) data environment.
However, inappropriate feature-preserving mechanisms and inefficient ciphertext descriptors resulted in lower
performance than expected. Therefore, how to design encryption techniques with high security and how
to extract effective features from ciphertext images still hinder privacy-preserving CBIR. For this goal, we
propose a privacy-preserving image retrieval based on deep convolutional network features. First, a novel
hybrid encryption technique is designed to encrypt images and an improved DenseNet model is fine-tuned
by using the encrypted images to construct a feature extractor. The encrypted images and fine-tuning feature
extractor are then uploaded to cloud server. Meanwhile, secure CBIR service is executed in the cloud server.
We conduct experiments on two public benchmark datasets for performance evaluation in terms of mAP
and accuracy. As demonstrated in the experimental results, the proposed method can achieve superior result
compared with the existing methods, improving the performance on the two metrics by relatively 1.9% and
10%, respectively. Furthermore, the computational cost and parameters of depthwise separable convolution
adopted by the improved DenseNet model are 8 to 9 times smaller than that of standard convolutions of the
original DenseNet at only a small reduction in accuracy.
1. Introduction

With the rapid popularization of mobile intelligent terminal devices,
more and more multimedia data (e.g., images or videos) are produced.
As a common practice, individuals or enterprises outsource their image
data to cloud server in order to get rid of cumbersome storage and
management. In this context, CBIR methods are widely used for data
owners to attain retrieval accuracy and efficiency (Gkelios et al., 2021;
Zheng et al., 2018). Moreover, authorized query users can obtain
images from the cloud server without maintaining communication with
the data owners (Anju & Shreelekshmi, 2022; Gu et al., 2020; Song
et al., 2022; Xia et al., 2019, 2019, 2020, 2016, 2015). It is worth
oting that while we enjoy the convenience of cloud computing, from
nother perspective, data owners do not fully trust cloud server (Barona

Anita, 2017; Li et al., 2020). In particular, finding a secure and
fficient mechanism to manage large-scale images remains one of the
ajor challenges facing CBIR technology today. To protect privacy,

raditional privacy-preserving CBIR, namely, feature-encryption CBIR
ased schemes, proposes to extract features from plaintext images and
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encrypt the features using the designed encryption techniques. The im-
age owners then upload both encrypted features and encrypted images
to the cloud server for storage and future management (Qin et al.,
2020; Xia et al., 2016, 2015). Yet, these methods will bring a lot of
extra computing burdens to ‘‘weak’’ image data owners and obviously
cannot scale well to manage CBIR service of large image libraries. As
a result, many researchers have proposed that the computing burdens
should be left to the cloud server for local computation efficiency (Anju
& Shreelekshmi, 2022; Ferreira et al., 2019; Gu et al., 2020; Li et al.,
2020; Song et al., 2022; Tang et al., 2021; Wang et al., 2020; Xia
et al., 2019, 2019, 2020, 2017), namely, image-encryption CBIR based
schemes. Among them, Anju and Shreelekshmi (2022), Xia et al. (2017)
adopt MPEG-7 descriptors for image feature representation, while the
proposed IES-CBIR in Ferreira et al. (2019) adopts Hue-Saturation-
Value (HSV) descriptor in image feature characterization. However, we
point out that most low-level features only focus on extracting local
key information, which can hardly discover the semantic correlations
required by the privacy-preserving CBIR processes.
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To tackle this issue, with the advent of deep convolutional neural
network (CNN), CBIR based on low-level features has been gradually
replaced by high-level semantic features (Gkelios et al., 2021; Hussain
et al., 2021; Öztürk, 2020; Pan et al., 2021) and fused features (Ma
et al., 2020; Qin et al., 2020). In general, the CNN model can achieve
better results in image classification and retrieval (Anju & Shreelek-
shmi, 2022; Huang et al., 2019; Ma et al., 2019; Pan et al., 2021),
ecause it can infer human perception by different convolution tem-
lates, pooling and other operations. Among the typical CNN models
e.g., AlexNet, GoogLeNet, VGG and ResNet), DenseNet is featured
ith extremely high feature utilization rate, stronger feature expression
bility, fewer parameters and less computation complexity (Huang
t al., 2019; Pan et al., 2021). Yet, endowing privacy preservation
roperty on complex semantic features is still an open problem, which
eeds dedicated design towards effective and security CBIR service.

In view of the above analysis, we propose a privacy-preserving im-
ge retrieval based on CNN features, which accommodate information
ensitivity in the data preprocessing, storage and searchability of cloud
omputing. Specifically, we design a hybrid encryption technique, in-
luding ChannelEnc, SequenceEnc, and PositionEnc, that can protect
oth color and texture information of images to prevent untrusted cloud
ervers from disclosing sensitive information of the data. Meanwhile,
he cloud server can extract semantic features from encrypted images
y utilizing an improved DenseNet model and then perform feature
imilarity matching to return all similar retrieval results. The main
ontributions of our work are in the following three aspects:

• Better hybrid encryption technique. We propose a privacy-
preserving mechanism with the color information and texture
information preserved jointly. Specifically, the color and tex-
ture features of the image are preserved by random substitution
of color channels and random scrambling of pixel bit plane
sequences, which guarantees stronger security than general en-
cryption technique.

• High retrieval performance. We propose an improved DenseNet
model, which replaces a part of the structure of the DenseNet net-
work with an inverted residual block and then adopts this model
to extract efficient semantic features from image ciphertexts.
Specifically, the encrypted images are leveraged to fine-tune the
improved DenseNet model and the semantic features of ciphertext
images are extracted on cloud server. Secure CBIR service are then
provided leveraging the computation advantages in the cloud
environments.

• More competitive. Extensive experimental results on two public
benchmark datasets and formal security analysis show that our
approach outperforms typical existing methods by a clear margin.

In this section, we discuss basic solutions of CBIR in cloud environ-
ent. Specifically, we propose a privacy-preserving CBIR framework

ased on CNN features and attempt to tackle the problems in the above
cheme. After a brief review of the related work in Section 2, we
ntroduce the technical outline and system model overview in Section 3.
ection 4 introduces secure data storage and search. In Section 5,
he experimental results and formal security analysis of our approach
ill be given, and the conclusion of our work will be summarized in
ection 6.

. Related work

In the cloud-assisted multimedia data environment, CBIR service
as been extensively explored in feature extraction, feature matching,
eature fusion, index construction, etc. In this section, we mainly focus
n two aspects, namely, feature-encryption CBIR based schemes and
mage-encryption CBIR based schemes. The kernel difference is that
eature extraction is performed before or after the encrypted images
2

re uploaded and we detailedly discuss these schemes in the following. a
.1. Feature-encryption CBIR based schemes

To retrieve similar images quickly from a large number of images,
ome promising CBIR techniques have been proposed (Amato et al.,
020; Gkelios et al., 2021; Zheng et al., 2018). However, the im-

ages always contain rich sensitive information and directly uploading
unencrypted images to the cloud is unsafe. For efficient ciphertext
image retrieval services and data privacy-preserving requirements, sen-
sitive data must be encrypted before being outsourced to cloud server.
Privacy-preserving CBIR allows data owners to upload encrypted im-
ages data to the cloud environment while completing secure privacy-
preserving image retrieval services in the cloud server (Li et al., 2020;
Lu et al., 2009a, 2009b, 2014; Weng et al., 2016; Xia et al., 2016,
2015). To our knowledge, Lu et al. (2009a) is the first to propose
privacy-preserving CBIR based on feature encryption. This method
adopts a Bag-of-Words (BoW) model to represent the feature informa-
tion of images while protecting the privacy of visual words through
min-hash and order-preserving methods. To improve the security of
feature encryption, in their next work Lu et al. (2009b) adopts three
techniques to protect image features, including bitplane randomiza-
tions, random unary encoding and random projections. Although this
method can effectively preserve the privacy of images, it will lead to
a low retrieval accuracy than expected. The above two methods are
compared with the homomorphic encryption in another work by Lu
et al. (2014), which shows that the proposed method requires less
computing, memory and communication resources.

Extensive researches have shown that efficient image feature de-
scriptors can improve retrieval performance. Xia et al. (2015) proposes
a privacy-preserving CBIR based on Scale-Invariant Feature Trans-
formation (SIFT) and Earth Mover’s Distance (EMD). SIFT and EMD
are adopted to represent the features and similarity measures of im-
ages, respectively. The calculation of the EMD is needed to construct
and solve the linear program problem. A linear transformation had
been performed on this problem to protect the sensitive parameters.
Weng et al. (2016) presents a privacy-preserving multimedia retrieval
method, which adopts robust hashing to encrypt image feature infor-
mation. However, this approach does not presume whether owner data
is accessible to the query users or not, which is somewhat debatable
for the privacy guarantee in a more strict scenario (i.e., the database is
confidential). Xia et al. (2016) investigates a privacy-preserving CBIR
with multi-MPEG descriptor feature information. At the same time, to
balance security and efficiency, this method adopts k-means to encrypt
information and uses Locality Sensitive Hashing (LSH) to improve
efficiency. Cheng et al. (2019) proposes a surveillance video privacy-
reserving based on person Re-identification (Re-ID). This method
ntegrates the CNN model and represents high precision and efficient
mage features by binary form. However, this method ignores the
ptimal relationship between the dimension of feature index and the
umber of cloud server, which greatly reduces the users experience,
nd the efficiency of secure person Re-ID in a real-world environment is
ot high. Qin et al. (2019) extracts Speeded-Up Robust Feature (SURF)
rom images and designed chaotic encryption to preserve features ans
he LSH is also utilized to improve retrieval efficiencies. Li et al. (2020)
rovides a similarity search for encrypted images in secure cloud com-
uting. This method leverages feature descriptors extracted by the CNN
odel and K-means clustering based on Affinity Propagation clustering

espectively to improve search accuracy and efficiency. Meanwhile, a
imited key-leakage k-Nearest Neighbor is designed to protect image
rivacy.

.2. Image-encryption CBIR based schemes

For CBIR service outsourced to cloud server, we need to strictly
rotect data privacy in cloud environment. In above analysis, the
eature encryption CBIR has achieved gratifying performance and this

pproach alleviates problem of insufficient storage space on client-side.
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However, operations such as feature extraction and feature encryption
will impose significant computational costs on data owners. To re-
duce the burdens, researchers propose several image-encryption based
privacy-preserving CBIR (Anju & Shreelekshmi, 2022; Ferreira et al.,
2019; Gu et al., 2020; Ma et al., 2020; Qin et al., 2020, 2020, 2019;
Song et al., 2022; Tang et al., 2021; Wang et al., 2020; Xia et al., 2019,
2019, 2020, 2017). In these methods, the image owners only need to
encrypt images, while other operations such as feature extraction, index
construction and CBIR service are outsourced to cloud server.

Xia et al. (2017) investigates a scheme that supports CBIR over
encrypted images without revealing sensitive information to cloud
server. In this method, secure k-nearest neighbors is adopted to protect
image feature representation vector and position-sensitive hashing is
leveraged to improve the search efficiency. Ferreira et al. (2019) pro-
poses the IES-CBIR, which not only supports encrypted images storage
and CBIR service but also can counter Honest-But-Curious (HBC) cloud
server. In cloud environment, HSV feature descriptors of the encrypted
images are extracted and similarity matching search is performed by
Hamming distance between the features representations. IES-CBIR can
significantly reduce the amount of calculation for image owners, with
cloud server bearing more computing costs. Xia et al. (2019) extracts
global Local-Binary-Pattern (LBP) histograms from encrypted images.
The method achieves better accuracy in privacy-preserving face recog-
nition but poor performance in terms of image retrieval. Moreover, Xia
et al. (2019) presents a scheme that extracted features from both
spatial and Discrete Cosine Transform (DCT) domains, namely, AC-
coefficients and color histograms (ACCH). Specifically, this method
calculates and connects the AC-coefficients histogram of the encrypted
Y component and two-color histograms of the U, V components as
feature representation vector. Wang et al. (2020) designs an outsourced
privacy-preserving CBIR based on BoW model, AES encryption, block
permutation and random mapping. This scheme can greatly reduce the
computing burdens of the data owners by outsourcing feature extrac-
tion, index construction and search operations to cloud server. To tackle
the problem of leaking values and orders of similarity scores, Song
et al. (2022) investigates an efficient threshold-based encrypted image
retrieval method that leverages CNN model to extract image feature
representations and allows users to specify thresholds for embedding
tokens. Tang et al. (2021) proposes an outsourcing secure JPEG image
retrieval scheme. This format-compatible method can achieve perfect
retrieval performance and get strong security without causing file size
expansion. Anju and Shreelekshmi (2022) provides a new and faster
secure CBIR method, which clusters global image features, namely,
MPEG-7 visual descriptors and adopts Asymmetric Scalar-product Pre-
serving (ASPE) to ensure privacy-preserving ranked search and secure
index updation. Although many efforts have been spent in privacy-
preserving CBIR, the challenging problem of secure CBIR, namely,
‘‘semantic gap for image-encryption feature’’, still exists between low-
level and high-level features. Ma et al. (2020) and Qin et al. (2020)
provide a searchable encrypted image retrieval method based on multi-
feature adaptive late-fusion in cloud environment. For the former,
this method extracts CNN features, HSV features and YUV features
of encrypted images, then fuses them in an adaptive manner to im-
prove retrieval accuracy. For the latter, it extracts low-level features
(e.g., BoW, Edge Histogram Descriptor (EHD)) and high-level semantic
features of encrypted images, then complete secure retrieval of feature
fusion. While these two methods adopt K-nearest neighbor and Logistic
encryption technique to protect the privacy of fusion features and
images, respectively.

As discussed above, to improve retrieval accuracy and encryption
technique security, our work proposes a privacy-preserving image re-
trieval based on CNN features. Unlike existing methods (Ferreira et al.,
2019; Tang et al., 2021; Xia et al., 2020, 2017), e.g., ES-CBIR, EPCBIR
and OPPR, which only leverages a single encryption technique or low-
level features of image encryption. We first adopt hybrid encryption
3

technique to encrypt images then fine-tune the improved DenseNet
model using encrypted images on the edge computing platform to
build feature extractors. Meanwhile, the encrypted images and deep
convolutional feature extractor are uploaded to cloud server. Finally,
privacy-preserving matching search is completed in cloud server to
greatly reduce the computing burdens of data owners.

3. Problem formulation

We propose a framework of privacy-preserving image retrieval
based on CNN features, which supports privacy-preserving, outsourced
storage and CBIR service. As shown in Fig. 1, the system model consists
of three modules: the edge computing module; the cloud server module
and the query user module.

3.1. Methods terminology

Image owner: The image owner encrypts 𝑀 = {𝑚𝑖}𝑛𝑖=1 composed
of 𝑛 images and the encrypted images are denoted as 𝐸 = {𝑒𝑖}𝑛𝑖=1.
Where 𝑚𝑖 and 𝑒𝑖 respectively represent the 𝑖th image in dataset 𝑀
and encrypted images dataset 𝐸, the index remains as 𝐼𝑁𝐷𝐸𝑋 =
{𝐼𝑛𝑑𝑒𝑥𝑖}𝑛𝑖=1.

Cloud server: The encrypted images dataset 𝐸 = {𝑒𝑖}𝑛𝑖=1 is stored on
cloud server by the data owners, which tackles limitation of insufficient
offline storage space. Meanwhile, the semantic feature representation
of encrypted images is extracted by the improved DenseNet extractor
with fine-tuning. In our work, the storage of encrypted images and CBIR
service are all completed in cloud server.

Image owner: For privacy-preserving of the query image, the users
are authorized to generate a trapdoor 𝑇𝐷 by the retrieving mechanism
before uploading the query image. Besides, the inquiring users need to
send an authorization request for the ‘decryption information’ key to
the data owners.

3.2. Adversary model

Similar to Searchable Symmetric Encryption (SSE) (Ferreira et al.,
2019; Gu et al., 2020; Lu et al., 2009a; Ma et al., 2020; Qin et al.,
2020, 2019; Song et al., 2022; Tang et al., 2021; Wang et al., 2020;
Xia et al., 2019, 2019, 2020, 2017), the goal of our work is not to
leak data information about the data owners and the query users. It
is important to note that cloud server is assumed to be HBC, which
will correctly enforce the relevant standards and will also analyze/track
sensitive data information under the protocol settings. It is generally
assumed that neither the data owners nor the authorized query users
will disclose any information to third parties in our work. Based on
the above assumptions, the encrypted images dataset 𝑒𝑖 and 𝑒𝑗 should
be of the same class, while the query images 𝑒𝑖𝑞 and 𝑒𝑗𝑞 will have a
high similarity to the two types of encrypted images dataset. For cloud
server, the two query images are considered to be similar. This type
of disclosure is common in data managed by cloud server, which have
access to all information in RAM and analyze content of interest based
on search traces of the query users. However, this set of disclosures
is almost negligible. Furthermore, it would impose unnecessary com-
putational and communication costs on system to consider the privacy
disclosure of this form in data matching retrieval process. Therefore,
our approach ignores information leakage from this mechanism.

4. The proposed method

In this section, we will introduce the details of our method from four
parts: key generation, image encryption, improved DenseNet model

fine-tuning framework and secure CBIR service.



Expert Systems With Applications 203 (2022) 117508W. Ma et al.
Fig. 1. Overview of our privacy-preserving CBIR framework. The system framework is composed of three modules: edge computing module for fine-tuning improved DenseNet
model, cloud server module for complete CBIR service and query user module.
4.1. Key generation

In our work, a hybrid encryption technique is proposed: the color
information of images is preserved by randomly replacing 𝑅𝐺𝐵 color
channels, while the texture information is preserved by conversion of
pixel sequence and position. Hence, the key groups can be denoted
as: 𝐾 = {(𝑅𝑎𝑛𝑑𝑁𝑢𝑚, {𝑅𝐺𝐵𝑟}5𝑟=0, 𝑘𝑒𝑦1), 𝑘𝑒𝑦2}. And sequence of each
channel has 𝐼𝑚𝑔𝑆𝑖𝑧𝑒 pixels, the corresponding pixels of spatial po-
sition between channels are replaced by random. The 𝑅𝑎𝑛𝑑𝑁𝑢𝑚 and
{𝑅𝐺𝐵𝑟}5𝑟=0 are leveraged to preserve the image color information of
parameter variables. Color channel encryption function can be defined
as:

𝑟𝑔𝑏∗ ← (𝑅𝑎𝑛𝑑𝑁𝑢𝑚, {𝑅𝐺𝐵𝑟}5𝑟=0) (1)

The privacy-preserving of image texture information is combined
with pixel bit-plane conversion to binary random scrambling and 𝑍𝑖𝑔−
𝑍𝑎𝑔 scan scrambling. Each pixel sequence by 𝑘𝑒𝑦1 is converted to
binary and random scrambling. According to the description, 𝑘𝑒𝑦1 can
be written as:

𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚∗ ← (𝑘𝑒𝑦1) (2)

In essence, 𝑍𝑖𝑔 −𝑍𝑎𝑔 encryption is to scramble the pixel matrix of
image, which is defined as:

𝑧𝑖𝑔∗ ← (𝑘𝑒𝑦2) (3)

Eqs. (1)–(3) are the encryption techniques defined in our work to
constitute the hybrid encryption. Combining these three encryption
techniques to complete image encryption, which can greatly improve
the security compared with other existing encryption techniques.

4.2. Image encryption

In Section 4.1, we briefly present the three steps of image en-
cryption. In this section, we will go into more detail about the three
encryption techniques and define an integrated hybrid encryption al-
gorithm.

ChannelEnc. There are {𝑅𝐺𝐵𝑟}5𝑟=0 scrambling ways for 𝑅𝐺𝐵 chan-
nel in key generation. 𝐶 represents the 𝑅𝐺𝐵 channels of original
4

image, while the pixel matrices of three channels are 𝐶𝑅, 𝐶𝐺 and 𝐶𝐵

respectively. Specifically, 𝑐𝑖𝑗 = (𝑐𝑅𝑖𝑗 , 𝑐
𝐺
𝑖𝑗 , 𝑐

𝐵
𝑖𝑗 ) denotes pixel value at the

pixel matrix (𝑖, 𝑗) for each color channel, where (𝑖, 𝑗) ∈ 𝐼𝑚𝑔𝑆𝑖𝑧𝑒, and
the number of pixels for the color channel is represented by 𝐼𝑚𝑔𝑆𝑖𝑧𝑒.
The encrypted images by random replacement of color channel is rep-
resented by 𝐶 ′. Hence, the pixel matrices of encrypted channel are 𝐶𝑅′ ,
𝐶𝐺′ and 𝐶𝐵′ respectively, while the pixels at matrix 𝑐′𝑖𝑗 = (𝑐𝑅′

𝑖𝑗 , 𝑐
𝐺′
𝑖𝑗 , 𝑐𝐵′

𝑖𝑗 )
are represented by (𝑖, 𝑗). 𝑚′ indicates image of the encrypted color
channel.

The image color privacy-preserving effect by RGB channel encryp-
tion is shown in Fig. 2, where the image color information can be
preserved in this technique. The quantitative details will be explained
in Section 5.

SequenceEnc. The pixel values of image are converted to binary
random scrambling encryption. 𝐶 ′ = {𝐶𝑅′ , 𝐶𝐺′ , 𝐶𝐵′} denotes channel
pixel matrix set of the color encrypted image 𝑚′, and 𝑐′𝑖𝑗 = (𝑐𝑅′

𝑖𝑗 , 𝑐
𝐺′
𝑖𝑗 , 𝑐𝐵′

𝑖𝑗 )
represents the (𝑖, 𝑗) position of 𝐶𝑅′ , 𝐶𝐺′ and 𝐶𝐵′ pixel matrix respec-
tively, where (𝑖, 𝑗) ∈ 𝐼𝑚𝑔𝑆𝑖𝑧𝑒. Therefore, 𝑐𝑅′

𝑖𝑗 = (𝑏𝑖𝑡1, 𝑏𝑖𝑡2,… , 𝑏𝑖𝑡8),
𝑐𝐺′
𝑖𝑗 = (𝑏𝑖𝑡1, 𝑏𝑖𝑡2,… , 𝑏𝑖𝑡8) and 𝑐𝐵′

𝑖𝑗 = (𝑏𝑖𝑡1, 𝑏𝑖𝑡2,… , 𝑏𝑖𝑡8) can be adopted to
denote that the image three-channel sequence is converted to a binary
sequence. While (𝑏𝑖𝑡3, 𝑏𝑖𝑡5,… , 𝑏𝑖𝑡8) ← 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚∗(𝑐𝑅′

𝑖𝑗 ), (𝑏𝑖𝑡1, 𝑏𝑖𝑡2,… , 𝑏𝑖𝑡8)
← 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚∗(𝑐𝐺′

𝑖𝑗 ) and (𝑏𝑖𝑡2, 𝑏𝑖𝑡5,… , 𝑏𝑖𝑡7) ← 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚∗(𝑐𝐵′
𝑖𝑗 ) represent

randomly generated 8-bit binary sequence. 𝐶 ′(𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚∗) =
{𝐶𝑅′ (𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚∗), 𝐶𝐺′ (𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚∗), 𝐶𝐵′ (𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚∗)} represents the con-
version of a sequence to a set of 8-bit binary randomly scrambled pixel
matrices. The image encrypted by sequence is denoted as 𝑚′′.

The image texture privacy-preserving effect by sequence encryption
is shown in Fig. 3, where the image texture information can be pre-
served in this technique. The quantitative details will be explained in
Section 5.

PositionEnc. We also employ 𝑍𝑖𝑔 −𝑍𝑎𝑔 scanning to scramble and
encrypt the pixel matrix. 𝑃 ′′ = {𝑃𝑅′′ , 𝑃𝐺′′ , 𝑃𝐵′′} represents a set of
pixels for color channel of the 𝑚′′ by 𝑍𝑖𝑔 − 𝑍𝑎𝑔 scanning. There-
fore, 𝑃𝑅′′ = [1, 2,… , 𝐼𝑚𝑔𝑆𝑖𝑧𝑒], 𝑃𝐺′′ = [1, 2,… , 𝐼𝑚𝑔𝑆𝑖𝑧𝑒] and 𝑃𝐵′′ =
[1, 2,… , 𝐼𝑚𝑔𝑆𝑖𝑧𝑒] respectively represent the vector of color channel
pixels, where 𝐼𝑚𝑔𝑆𝑖𝑧𝑒 represents the number in each channel of the
image 𝑚′′. 𝑒 represents an image that is encrypted in three techniques.
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Fig. 2. Example image from the Corel10k dataset. The (a) represents the original image and the (b) denotes the qualitative visualization result of RGB color channel encrypted
image.
In light of the above analysis, three encryption techniques are de-
scribed: ChannelEnc, SequenceEnc and PositionEnc. Now we will define
a complete image encryption HybridEnc, as shown in 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 1.

The image texture privacy-preserving effect by pixel position en-
cryption is shown in Fig. 4, where the image texture information can be
preserved in this technique. The quantitative details will be explained
in Section 5.

Algorithm 1 : HybridEnc
Input: image dataset 𝑀 and the key groups 𝐾 =
{(𝑅𝑎𝑛𝑑𝑁𝑢𝑚, {𝑅𝐺𝐵𝑟}5𝑟=0, 𝑘𝑒𝑦1), 𝑘𝑒𝑦2}.
Output: encrypted images dataset 𝐸.

1: for ∀𝑚𝑖 ∈ 𝑀 do.
2: 𝑚′ = 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐸𝑛𝑐(∀𝑐𝑖𝑗 ∈ {𝐶𝑅, 𝐶𝐺 , 𝐶𝐵}, 𝑐′𝑖𝑗 ← 𝑟𝑔𝑏∗(𝑐𝑖𝑗 )).
3: 𝑚′′ = 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝐸𝑛𝑐(∀𝑐′𝑖𝑗 ∈ {𝐶𝑅′ , 𝐶𝐺′ , 𝐶𝐵′}, 𝑐′𝑖𝑗 =

(𝑏𝑖𝑡1, 𝑏𝑖𝑡2, ..., 𝑏𝑖𝑡8), 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚∗(𝑐′𝑖𝑗 ) → (𝑏𝑖𝑡5, 𝑏𝑖𝑡7, ..., 𝑏𝑖𝑡2), 𝑐′′𝑖𝑗 ←
(𝑏𝑖𝑡5, 𝑏𝑖𝑡7, ..., 𝑏𝑖𝑡2).

4: 𝑒 = 𝑍𝑖𝑔-𝑍𝑎𝑔𝐸𝑛𝑐(∀{𝐶𝑅′′ , 𝐶𝐺′′ , 𝐶𝐵′′}, 𝑃 ′′ = {𝑃𝑅′′ , 𝑃𝐺′′ , 𝑃𝐵′′} ←
{𝐶𝑅′′ , 𝐶𝐺′′ , 𝐶𝐵′′})), by 𝑍𝑖𝑔-𝑍𝑎𝑔 scanning the pixel matrix into a
vector set.

5: The one-dimensional pixel vector of RGB channel is respectively
restored to the 𝐼𝑚𝑔𝑆𝑖𝑧𝑒-size image.

6: end for.
7: Output encrypted images dataset 𝐸.

4.3. Improved DenseNet model

As investigated in Huang et al. (2019), Ma et al. (2020) and Pan
et al. (2021), DenseNet is a typical CNN architecture with some dense
block structures, namely, each layer is connected with other layers
and each layer is a map of the previous layer’s features as input,
which has achieved promising performance in image retrieval tasks.
Although these dense block structures enhance feature representation
leading to superior results, they also add many parameters and huge
computational overhead to the model. To reduce the parameters and
5

computational cost, we propose an improved DenseNet structure that
replaces a part of DenseNet model by introducing a lightweight mod-
ule. As shown in Fig. 5, our CNN architecture consists of two parts,
including image processing and improved DenseNet model. For image
processing, the proposed hybrid encryption technique is used to en-
crypt images as input of the improved DenseNet model. The detailed
encryption steps are shown in 𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 1. In terms of improved
DenseNet model, inspired by Pan et al. (2021) and Sandler et al.
(2018), we introduced a lightweight module, namely, inverted residual
block. Specifically, different from original DenseNet block, the inverted
residual block consists of depthwise separable convolution.

Assuming that the depthwise separable convolution takes an ℎ𝑖 ×
𝑤𝑖 × 𝑑𝑖 input feature tensor 𝐿𝑖, and applies convolutional kernel 𝐾 ∈
𝑘×𝑘×𝑑𝑖×𝑑𝑗 to produce an ℎ𝑖 ×𝑤𝑖 × 𝑑𝑖 output tensor 𝐿𝑗 . The calculation
cost 𝑉𝑐𝑜𝑠𝑡 of depthwise separable convolution layers is:

𝑉𝑐𝑜𝑠𝑡 = 𝑘 × 𝑘 × ℎ𝑖 ×𝑤𝑖 × 𝑑𝑖 + ℎ𝑖 ×𝑤𝑖 × 𝑑𝑖 × 𝑑𝑗 (4)

While the calculation cost 𝑈𝑐𝑜𝑠𝑡 of standard convolution layers is:

𝑈𝑐𝑜𝑠𝑡 = 𝑘 × 𝑘 × ℎ𝑖 ×𝑤𝑖 × 𝑑𝑖 × 𝑑𝑗 (5)

Depthwise separable convolutions are a drop-in replacement for
standard convolutional layers. Intuitively speaking, the calculation cost
ratio 𝐶𝑟𝑎𝑡𝑖𝑜 of depthwise separable convolution 𝑉𝑐𝑜𝑠𝑡 to standard convo-
lution 𝑈𝑐𝑜𝑠𝑡 is shown in following equation:

𝐶𝑟𝑎𝑡𝑖𝑜 =
𝑉𝑐𝑜𝑠𝑡
𝑈𝑐𝑜𝑠𝑡

= 1
𝑑𝑗

+ 1
𝑘2

=
𝑑𝑗 + 𝑘2

𝑑𝑗𝑘2
(6)

Furthermore, the parameters of depthwise separable convolution
and standard convolution are 𝑉𝑝𝑎𝑟𝑎𝑠 = 𝑘 × 𝑘 × ℎ𝑖 + 1 × 1 × ℎ𝑖 × 𝑑𝑗 and
𝑈𝑝𝑎𝑟𝑎𝑠 = 𝑘×𝑘×ℎ𝑖×𝑑𝑗 , respectively. As a result, the parameters cost ratio
of 𝑉𝑝𝑎𝑟𝑎𝑠 to 𝑈𝑝𝑎𝑟𝑎𝑠 is 𝑃𝑟𝑎𝑡𝑖𝑜 = (𝑑𝑗+𝑘2)∕𝑑𝑗𝑘2. Compared with the traditional
convolutional layer, the depthwise separable convolution effectively
reduces computation and parameters by almost a factor of 𝑘2. Following
the Pan et al. (2021) and Sandler et al. (2018), in our experiments
we adopt 𝑘 = 3, namely, 3 × 3 depthwise separable convolution so
the computational cost and parameters are 8 ∼ 9 times smaller than
standard convolution with only a small reduction in accuracy.
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Fig. 3. Example image from the Corel10k dataset. The (a) represents the original image and the (b) denotes the qualitative visualization result of sequence encrypted image.
Fig. 4. Example image from the Corel10k dataset. The (a) represents the original image and the (b) denotes the qualitative visualization result of pixel position encrypted image.
4.4. Retrieval service

The main task of our work is to reduce the computational burdens
of data owners, that is, extraction of encrypted images semantic feature
representation and image similarity matching retrieval are completed
in cloud environment. After trapdoor 𝑓𝑞 is generated, the cloud server
will conduct complete CBIR service. Then calculate the Euclidean dis-
tance between the query image feature 𝑓𝑞 and all the encrypted image
features stored in cloud server, which can be defined as:

2 (7)
6

𝑠𝑖𝑚(𝑒𝑞 , 𝐸) = ‖𝑓𝑞 − 𝑓𝑖‖ , 𝑤ℎ𝑒𝑟𝑒 𝑖 = 1, 2,… , 𝑛
Where 𝑒𝑞 and 𝑓𝑞 respectively denote the encrypted query image and
its feature representation, 𝑓𝑖 is semantic feature representation of the
𝑖th image in the encrypted image dataset 𝐸, and 𝑛 is the number of all
encrypted images stored in cloud environment. According to Eq. (7),
the corresponding Top-k images are returned.

5. Experimental results and analysis

In this section, we will experiment on two public benchmark
datasets (e.g., Holidays, Corel10k) and compare the results with other
existing privacy-preserving CBIR methods. This section includes seven
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Fig. 5. The architecture of our model consists of two parts, including image processing and an improved DenseNet model.
parts: 5.1. implement details and datasets; 5.2. presenting image en-
cryption effect; 5.3. demonstrating the comparisons with other ap-
proaches; 5.4. showing the search efficiency on two datasets; 5.5.
comparison performance of different fine-tuning models; 5.6. demon-
strating the generalization performance of fine-tuning model; 5.7.
security analysis of hybrid encryption technique.

5.1. Implementation details and datasets

Initialize DenseNet201 as the backbone network for feature rep-
resentations, the entire network is trained with Stochastic Gradient
Descent (SGD) on Windows-64, AMD Ryzen5 2600X CPU@3.60 GHz,
16 GB of RAM and one NVIDIA GeForce RTX-2080ti GPU. The learning
rate is initialized at 1 × 10−2, and then decrease it to 1 × 10−3 and
1 × 10−4 at 100 epochs and 150 epochs, and stop at 200 epochs. The
Momentum and batchsize are set to 0.9 and 64, respectively. Then, a
brief introduction to Holidays (Jegou et al., 2008; Xia et al., 2017) and
Corel10k (Wang et al., 2001; Xia et al., 2016).

[Holidays] The dataset consists of 1491 images from 500 cate-
gories of similar images. Each image category has one query, totaling
500 query images. In this paper, we adopt Average Precision (AP)
as a metric to evaluate model performance. Moreover, since retrieval
datasets typically have multiple query images, their respective APs are
averaged to produce the final performance evaluation, namely, mean
Average Precision (mAP).

[Corel10k] Corel10k is the another benchmark dataset for image
retrieval performance test, which contains 10000 images of 100 objects
and each category has 100 different image views. In this work, we em-
ploy average precision of the search results to evaluate the performance
of our method.

5.2. Encryption effect

In this paper, a hybrid encryption function is designed, which
includes ChannelEnc: color channel random replacement, SequenceEnc:
bit-plane sequence conversion to binary random scrambling, and Posi-
tionEnc: pixel position 𝑍𝑖𝑔 − 𝑍𝑎𝑔 scanning scrambling. Fig. 6 shows
an example of our hybrid encryption technique on Corel10k dataset.
Fig. 6(a) represents the original image, while Fig. 6(b) demonstrates
the visualization result by our hybrid encryption.

To examine whether quantization processes affect the image restora-
tion, we respectively calculate the Peak Signal to Noise Ratio (PSNR)
between four groups of images on two datasets, including Original
image & ChannelEnc image, Original image & SequenceEnc image,
Original image & PositionEnc image and Original image & HybridEnc
image. As we can be seen from the PSNR in Table 1, on Holidays,
the proposed hybrid encryption technique approximates ACCH (Xia
et al., 2019), while on Corel10k the PSNR of encrypted image by three
techniques (hybrid encryption) is better than that of encrypted image
by ones. Furthermore, it is worth noting that our encryption technique
is better than PartEnc (Xu et al., 2017), either alone or combined.
7

Table 1
Comparison of perceptual quality (PSNR) on Corel10k and Holidays by different
encryption techniques, e.g., PCBIR-CD (Xia et al., 2016), PartEnc (Xu et al., 2017),
ACCH (Xia et al., 2019), SCBIR (Anju & Shreelekshmi, 2022), ChannelEnc image,
SequenceEnc image, PositionEnc image, HybridEnc image and Restoration image. Here,
‘–’ denotes that no experimental results with same settings are available.

Encryption methods PSNR (dB)

Holidays Corel10k

PCBIR-CD – 36.02
PartEnc – 8.9547
ACCH 33.87 –
SCBIR – 45.98
ChannelEnc image 39.06 35.83
SequenceEnc image 33.51 34.49
PositionEnc image 32.71 32.49
HybridEnc image 32.39 31.98
Restoration image 31.25 31.16

Therefore, compared with PartEnc (Xu et al., 2017) and ACCH (Xia
et al., 2019), the quantization of our hybrid encryption technique is
acceptable and the encrypted image can be restored after decryption.

5.3. Comparison with state-of-the-arts

As shown in Fig. 7 and Table 2, to demonstrate the performance
of our method, we compare our approach with state-of-the-art privacy-
preserving CBIR methods on two public benchmark datasets, specifi-
cally PCBIR-CD (Xia et al., 2016), EPCBIR (Xia et al., 2017), Harris (Qin
et al., 2019), JES-MSIR (Gu et al., 2020), Fusion-CBIR (Ma et al., 2020),
MIPP (Shen et al., 2020) and SCBIR (Anju & Shreelekshmi, 2022);
PKHE (Lowe, 2004), PartEnc (Xu et al., 2017), IES-CBIR (Ferreira
et al., 2019), ACCH (Xia et al., 2019), LBP-BOW (Xia et al., 2020) and
BOEW (Xia et al., 2022).

On Corel10k, we adopt the standard performance evaluation indica-
tor ‘‘precision’’, which is defined as 𝑃𝑘 = 𝑘′∕𝑘, where 𝑘 and 𝑘′ represent
the number of all retrieval results by current query and the number of
images similar to query in the results, respectively. In experiment, we
divide Corel10k into training set and test set, employ the training set
for fine-tuning the improved DenseNet model and then randomly select
images from the test set as a query. Fig. 7(a) shows average search
precision on Corel10k, it can be seen that our approach is superior to
SCBIR (Anju & Shreelekshmi, 2022) and other methods for each Top-𝑘
(𝑘 = 20, 40, 60, 80, 100). In particular, when the retrieval image is Top-
100, the performance of our method is 44.06%, which is a significant
improvement compared to Harris (Qin et al., 2019) and PCBIR-CD (Xia
et al., 2016). We believe the major gain comes from deep convolution
feature, which enhances feature representation of the encrypted image.
As shown in Fig. 7(b), to avoid uneven distribution of average search
precision, we divided Corel10k dataset into three parts with different
sizes image collection in the experiment: 1∼3.3k, 1∼6.6k, and 1∼10k,
randomly select 150, 300, 500 as query images, while Ours-CBIR-1,
Ours-CBIR-2, Ours-CBIR-3 respectively represent their corresponding
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Fig. 6. Example image from the Corel10k dataset. The (a) represents the original image and the (b) denotes the qualitative visualization result of our hybrid encrypted image.
Fig. 7. The (a) represents average search precision of our approach compared with PCBIR-CD (Xia et al., 2016), EPCBIR (Xia et al., 2017), Harris (Qin et al., 2019), JES-MSIR (Gu
et al., 2020), Fusion-CBIR (Ma et al., 2020), MIPP (Shen et al., 2020) and SCBIR (Anju & Shreelekshmi, 2022) on Corel10k. While the (b) denotes the Top-𝑘 search precision of
ur method on different sizes image collection of Corel10k.
esults, which indicates that the overall retrieval quality of our method
s superior to SCBIR (Anju & Shreelekshmi, 2022) and other methods.

On Holidays, we adopt mAP as the evaluation metric for retrieval
esults of each query, which is superior to BOEW (Xia et al., 2022)
nd other methods. However, due to the small number of images
n Holidays, the dataset needed to be data augmentation and then
he improved DenseNet model fine-tuned. The dataset is increased to
946 images by processing the images with brightness transformation,
ontrast transformation, vertical flip, vertical flip, and vertical&vertical
lip, respectively. Table 2 shows the comparison with state-of-the-art

methods, we can see that the semantic feature representations can yield
superior performance in privacy-preserving CBIR. In the experiment,
PKHE (Lowe, 2004), IES-CBIR (Ferreira et al., 2019) and BOEW (Xia
8

et al., 2022) respectively leverage SIFT and color (e.g., YUV, HSV and
RGB) low-level features, which could not express the semantic repre-
sentation information of encrypted images. Notely, Fusion-CBIR (Ma
et al., 2020) also adopts CNN semantic feature representation, our
search efficiency is about 27 times higher than fusion-CBIR with only
a small reduction in mAP. Moreover, even though the CNN feature
representation dimension extracted by our method is high, while its
efficiency is better to other methods.

5.4. Search efficiency

In this section, the efficiency of our method will be demonstrated
by image encryption, feature extraction and search time.
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Table 2
Comparison of mAP with PKHE (Lowe, 2004), PartEnc (Xu et al., 2017), IES-
CBIR (Ferreira et al., 2019), ACCH (Xia et al., 2019), LBP-BOW (Xia et al., 2020),
Fusion-CBIR (Ma et al., 2020) and BOEW (Xia et al., 2022) on Holidays. Here, ‘‘–’’
denotes that no experimental results with same settings are available.

Methods Descriptor mAP (%) Search efficiency (ms)

PKHE SIFT 57.90 –
PartEnc YUV color 56.04 20
IES-CBIR HSV color 54.564 –
ACCH YUV color 52.938 6000
LBP-BOW LBP features 51.595 143.0
Fusion-CBIR CNN features & HSV 61.45 358.2
BOEW-YUV YUV color 62.641 70.4
BOEW-RGB RGB color 61.11 70.4
Ours CNN features 63.01 13.20

Table 3
Feature extraction time of our method compared with IES-CBIR (Ferreira et al., 2019),
JES-MSIR (Gu et al., 2020), LBP-BOW (Xia et al., 2020), DLHEIR (Pan et al., 2021)
and BOEW (Xia et al., 2022) on Corel10k and Holidays. Here, ‘‘–’’ denotes that no
experimental results with same settings are available.

Dataset/Method Ours IES-CBIR JES-MSIR LBP-BOW DLHEIR BOEW

Corel10k, time (s) 67.2 – 901 – 128.25 –
Holidays, time (s) 428.8 7050.5 – 3575.60 – 8284.66

Image encryption. Images are encrypted by ChannelEnc,
equenceEnc and PositionEnc, with time complexity of 𝑂(3 ∗ 𝐼𝑚𝑔𝑆𝑖𝑧𝑒),
(𝐼𝑚𝑔𝑆𝑖𝑧𝑒) and 𝑂(𝐼𝑚𝑔𝑆𝑖𝑧𝑒) respectively. Experiments on Corel10k and
olidays show that the average encryption time per image is 1.5 s and
4.58 s, respectively. Due to the particularity of the Holidays dataset
mages (relatively high resolution of each image and only 3.84M for
he first image), the encryption process is longer than that of Corel10k.
Feature extraction. In this paper, we extract semantic feature

epresentation of encrypted images in cloud server. Moreover, the
eature representation is 1024-dim, which is larger than that of the
revious other methods (e.g., IES-CBIR, Ferreira et al., 2019, JES-

MSIR, Gu et al., 2020, LBP-BOW, Xia et al., 2020, DLHEIR, Pan et al.,
2021 and BOEW, Xia et al., 2022), while the feature extraction time
is shorter. Notably, we found loading the fine-tuned model to be more
time-consuming in our experiments, and considering that the feature
extraction is done in cloud server, we do not calculate the time con-
sumption of this process. The efficiency of feature extraction is shown
in Table 3.

Search time. Feature extraction of encrypted images dataset 𝐸 =
{𝑒𝑖}𝑛𝑖=1 and similarity matching search of query image 𝑒𝑞 are completed
within cloud server, then the most similar Top-k candidate images are
returned to the query users. In order to compare the retrieval efficiency
with existing method, we divide Corel10k into five image collections of
2k, 4k, 6k, 8k, and 10k, while set Top-k candidates is 100. In Fig. 8, the
semantic feature representation is 1024-dim, while feature dimensions
of existing other methods (e.g., PCBIR Xia et al., 2016, EPCBIR Xia
et al., 2017, MIPP Shen et al., 2020 and CBIRSH Qin et al., 2020) are
low, resulting in a longer retrieval time than theirs. It is worth noting
that the CBIR service of our approach is completed in cloud server.
The supercomputing power of the cloud server can compensate for the
inefficient retrieval.

Table 4 shows the average search time of our method and LBP-
BOW (Xia et al., 2020) on Holidays, due to the particularity of the
dataset, we set the Top-k = 100. Moreover, no experimental results
with same settings are available in IES-CBIR (Ferreira et al., 2019),
JES-MSIR (Gu et al., 2020), DLHEIR (Pan et al., 2021) and BOEW (Xia
et al., 2022), so we only list the retrieval efficiency of our method and
LBP-BOW. Especially, the retrieval time consumption of our method is
similar to that of LBP-BOW on small sizes image collection of Holidays,
with the increase of image collection, our time consumption is tardily
9

improved, while that of LBP-BOW increases sharply. p
Fig. 8. Average search time (ms) of our method compared with PCBIR (Xia et al.,
2016), EPCBIR (Xia et al., 2017), MIPP (Shen et al., 2020), CBIRSH (Qin et al., 2020)
and SCBIR (Anju & Shreelekshmi, 2022) for different sizes of image collection on
Corel10k.

Fig. 9. Comparison of average search precision with different proportions (e.g., 6 : 4,
6.5 : 3.5, 7 : 3, 7.5 : 2.5 and 8 : 2) on Corel10k.

5.5. Comparison performance of different fine-tuning models

According to task of our work, we design a novel DenseNet model
by fine-tuning and optimizing parameters, namely, improved DenseNet.
In experiments, we leverage two public benchmark datasets Corel10k
and Holidays with images of 10000 and 8946 (data augmentation), re-
spectively. Then we respectively divide two encrypted images datasets
into a training set and test set at the ratios of 6 : 4, 6.5 : 3.5, 7 : 3, 7.5
: 2.5 and 8 : 2 for fine-tuning training.

The experimental results are demonstrated in Figs. 9 and 10, we test
ifferent proportions average search precision and mAP on Corel10k
nd Holidays, respectively. It is notable that with the proportion in-
reases, the precision is gradually improved. As can be seen from
ig. 9, by different proportions 6 : 4, 6.5 : 3.5, 7 : 3, 7.5 : 2.5
nd 8 : 2 when Top-k = 100 boosted performance in the in average
earch precision by 34.43%, 40.61%, 44.06%, 55.27% and 60.24%,
espectively. Similar results can be observed on Holidays, as we can
ee from Fig. 10 that the mAP is enhanced from 50.4% to 53.71%,
3.01%, 70.08%, and 79.24% through the increase of proportion.
urthermore, we carry out experiments on Holidays with different
roportions under four encryption techniques, including ChannelEnc
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Table 4
Average search time (ms) of our method compared with LBP-BOW (Xia et al., 2020) for different sizes of image collection on Holidays.

Methods Feature No. of images on Holidays dataset (102)

1 2 3 4 5 6 7 8 9 10 12 14.91

LBP-BOW LBP features 10.17 19.63 28.34 37.26 47.69 56.23 63.26 75.19 84.43 95.69 115.62 142.37
Ours CNN features 8.43 8.79 9.50 9.71 9.93 10.22 10.59 10.82 11.22 11.48 12.04 13.20
Table 5
Comparison of parameters, FLOPs, mAP and average search precision with different encryption techniques on Holidays and Corel10k.

Methods Parameters MFLOPs Holidays, mAP (%) Corel10k, Top-k (%))

Top-20 Top-40 Top-60 Top-80 Top-100

DenseNet Model (ChannelEnc)

183.71M 164.68

90.45 91.25 85.62 78.46 72.33 68.59
DenseNet Model (SequenceEnc) 73.69 78.51 72.39 65.37 58.92 52.76
DenseNet Model (PositionEnc) 73.27 77.9 73.64 66.18 56.72 50.97
DenseNet Model (HybridEnc) 61.45 67.89 64.61 59.46 51.64 43.94

Ours Model (ChannelEnc)

176.54M 158.21

92.31 92.39 86.04 77.89 72.05 69.47
Ours Model (SequenceEnc) 72.54 78.23 71.96 64.73 59.36 52.71
Ours Model (PositionEnc) 74.82 78.54 72.24 65.52 55.49 49.89
Ours Model (HybridEnc) 63.01 68.26 65.39 59.78 50.92 44.06
Fig. 10. Comparison of mAP with different proportions on Holidays. The ChannelEnc,
SequenceEnc, PositionEnc, and HybridEnc indicate the four encryption techniques,
respectively.

image, SequenceEnc image, PositionEnc image and HybridEnc image.
Fig. 10 shows that regardless of the encryption technique, the mAP
improves as the proportion increases. Meanwhile, it is important to note
that ChannelEnc achieves best performance, obtaining 89.23, 90.53,
92.31, 94.76 and 97.96 in mAP on 6 : 4, 6.5 : 3.5, 7 : 3, 7.5 : 2.5 and
8 : 2, respectively. By contrast, the SequenceEnc and PositionEnc lead
to moderate performance, which yields 72.54 and 74.82 in mAP on 7 :
3, respectively. Although the HybridEnc leads to inferior performance
in mAP on all proportions, it can better protect the image information,
namely, accuracy-security trade-off of our method. However, research
shows that with the proportion increases, the fine-tuning model has
superior result for current dataset, but its generalization is greatly
weakened. Therefore, we discuss the generalization performance of
fine-tuning model on different datasets in Section 5.6.

Moreover, we compare the parameters, FLOPs, mAP and average
search precision of our model with the original DenseNet model in
different encryption techniques. As we can see from Table 5, the mAP
and average search precision of the two models have the same trend.
Floating point operations per second (FLOPs) is an indicator to measure
computer performance, which is widely adopted in CNN to measure the
computation cost of models, such as Sandler et al. (2018) and Pan et al.
10
Fig. 11. Comparison of average search precision by ‘‘Holidays-model’’ with
SCBIR (Anju & Shreelekshmi, 2022), JES-MSIR (Gu et al., 2020), MIPP (Shen et al.,
2020) and EPCBIR (Xia et al., 2017) on Corel10k. Ours-CBIR-1, Ours-CBIR-2, Ours-
CBIR-3, Ours-CBIR-4, and Ours-CBIR-5 represent fine-tuning training models at 6 : 4,
6.5 : 3.5, 7 : 3, 7.5 : 2.5 and 8 : 2 proportions on Holidays dataset, respectively.

(2021). In Table 5, our method is better than the original DenseNet in
terms of both parameters and FLOPs.

5.6. Generalization performance of fine-tuning model

In Section 5.5, we conduct experiments on various fine-tuning mod-
els, and the results demonstrate that the performance gets better and
better as the proportion increases. We expect the fine-tuning model
to have better generalization performance to other datasets. To verify
the generalization, we conduct across-datasets experiment adopting
fine-tuning models on two encrypted datasets, namely, the fine-tuning
model for Holidays (‘‘Holidays-model’’) extracts features from Corel10k
and calculates average search precision, while the fine-tuning model
for Corel10k (‘‘Corel10k-model’’) extracts features from Holidays and
calculates mAP.

As shown in Fig. 11, Ours-CBIR-1, Ours-CBIR-2, Ours-CBIR-3, Ours-
CBIR-4, and Ours-CBIR-5 represent the search results of models fine-
tuning by Holidays in different proportions on Corel10k, respectively.
While EPCBIR-CLD and EPCBIR-EHD denote the performance of
EPCBIR (Xia et al., 2017) on CLD and EHD features, respectively.
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Compared with Figs. 7 and 9, the generalization performance of the five
ine-tuning models by Holidays is significantly reduced across-datasets
nd is inferior to existing approaches (e.g., SCBIR Anju & Shreelekshmi,

2022, JES-MSIR Gu et al., 2020, MIPP Shen et al., 2020 and EPCBIR Xia
et al., 2017). It is worth noting that the generalization of Ours-CBIR-
3 [‘‘Holidays-model’’ (7 : 3)] approximates EPCBIR-CLD. In addition,
we also conduct the retrieval experiments on Holidays by five models
with Corel10k fine-tuning, and the results showed that the mAP is
greatly reduced. This subsection aims to verify generalization of the
fine-tuning model, so we will not list experimental data compared with
IES-CBIR (Ferreira et al., 2019). Meanwhile, to balance average search
precision and generalization, we employ the 7 : 3 fine-tuning model for
both datasets in our experiments.

5.7. Security analysis

In above, we present a model based on HBC cloud server, that is,
assuming that the cloud server is HBC and it will correctly implement
relevant standards under the protocol settings, which also analyze and
track sensitive data information. In this section, we will verify the
security of our method from five aspects: security of image content, se-
curity of image features, security of query image, possible information
disclosure and image decryption & recovery.

The privacy security of image content. We leverage color channel
random replacement (computational complexity is (𝐼𝑚𝑔𝑆𝑖𝑧𝑒 ∗ 6)!)
nd pixel position scrambling (security intensity is log2{(𝐼𝑚𝑔𝑆𝑖𝑧𝑒 ∗
)! ∗ 8!}) to encrypt the images of size 𝐼𝑚𝑔𝑆𝑖𝑧𝑒. Compared to security
ntensity with 3 ∗ log2{101!} of IES-CBIR (Ferreira et al., 2019), our

method has higher safety. In Fig. 6, we illustrate original and encrypted
images by our hybrid encryption manner.

The privacy security of image features. The cloud server adopts
a fine-tuning improved DenseNet model to extract semantic feature
representation (1024-dim) of encrypted images stored in cloud environ-
ment. Moreover, our encryption technique has been proven effective in
the Ciphertext-only Attack (COA) security test (Ferreira et al., 2019; Xia
et al., 2017). It is worth noting that the cloud server has access to all the
feature representation, but analyzing correlations between the feature
representation requires significant computational complexity ({1024!}).

The privacy security of query image. In order to protect privacy
f query images, query users need to upload encrypted query images
o cloud server for complete CBIR service. Therefore, security intensity
f the query image is log2{(𝐼𝑚𝑔𝑆𝑖𝑧𝑒 ∗ 6)! ∗ 8!}).
The leakage of similarity information. The encrypted images

datasets 𝑒𝑖 and 𝑒𝑗 belong to the same class, while query images 𝑒𝑖𝑞 and
𝑗𝑞 will have a high similarity score with two encrypted image datasets.
or cloud server, two query images are considered similar. This type of
nformation disclosure is common for cloud server management data,
nd our work hardly considers leaks from this mechanism.
The decryption and restoration of image. In privacy-preserving

BIR, PSNR is used to measure performance of image encryption and
ecovery effect of decrypted images. To verify effect of our hybrid
ncryption technique on image decryption and recovery, we perform
SNR experiments on Corel10k and Holidays. It is easy to see from
able 1 that our encryption technique outperforms existing methods
PartEnc Xu et al., 2017, ACCH Xia et al., 2019) in image decryption

and recovery, which meets the security requirements of encryption
system.

6. Conclusion

This paper proposes a privacy-preserving content-based image re-
trieval based on the deep CNN features by cloud environment. On the
one hand, we extract semantic feature representation from encrypted
images using fine-tuned improved DenseNet model feature extractor on
the cloud server. On the other hand, we adopt a hybrid encryption tech-
nique, including ChannelEnc, SequenceEnc, and PositionEnc to protect
11
the privacy and security of images data. Extensive experiments on
two public benchmark datasets have demonstrated that our approach
consistently outperforms existing methods.

In this work, we not only expect to achieve better performance
but also to reduce computational burdens of the data owners. By
designing a secure CBIR service in cloud server, this paper reduces
the computing cost of data owners to some extent. Nevertheless, fine-
tuning on edge computing platform is also time-consuming and the
generalization performance of fine-tuning model on other datasets
decreases significantly. As a result, we will explore an efficient privacy-
preserving CBIR framework with superior generalization performance
in future work.
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